当前位置:首页 > 教学文档 > 教学反思

《除数是两位数的除法》教学反思

时间:2023-01-12 05:38:54
《除数是两位数的除法》教学反思

《除数是两位数的除法》教学反思

身为一名到岗不久的人民教师,我们需要很强的教学能力,对学到的教学新方法,我们可以记录在教学反思中,那么教学反思应该怎么写才合适呢?以下是小编整理的《除数是两位数的除法》教学反思 ,仅供参考,欢迎大家阅读。

《除数是两位数的除法》教学反思 1

除数是两位数的除法是小学生学习整数除法的关键阶段,教学重点是确定商的书写位置,除的顺序及试商的方法,帮助学生解决笔算的算理;难点是试商的方法。学生以前学习过除数是一位数商是一位数或两位数的除法,教学时让学生回忆以前的知识,特别是除法的笔算方法,然后学习除数是两位数的除法的笔算方法,让学生在原有知识的基础上理解商的书写位置,除的顺序等基本问题,然后着重解决试商的问题。教材中安排了四组例题,分层次、分阶段分化了重点,分散了难点。例1主要解决试商、商的书写位置等问题;通过例2的教学使学生学会用四舍五入法把除数看作整十数来试商。例3的教学要使学生认识到要根据具体的情况采用不同的方法来试商。例4教学商是两位数的除法。

从这一单元的教学中,我意识到,教材只是一个教学工具,应该是“用教材”,而不是“教教材”。在使用过程中,应该结合学生实际,灵活的使用教材,学生初步学习除数是两位数的笔算除法,用四舍五入把除数看作和它接近的整十数进行试商后,学生试商时困难较大,在教给学生基本方法的同时,还应适当补充一点试商的小窍门。比如当除数的末尾数是1或9时,用四舍五入法一次试商即可成功。而当除数的末尾数是2、3、6、7、8时,在试商过程中,一般都要调商。当除数末尾数是4或5时,往往要经过多次调试方能求出商数来。在这种情况下,四舍五入法就显得不适应了,因为所取的近似数与原除数误差较大。

尽管教学时已给学生总结出了“用四舍”时,因把除数看小了,初商容易偏大,试商时可比原来想的商小1,而“五入”时,因把除数看大了,初商容易偏小,试商时可比原想的商大1。而学生在具体的计算中,还是感到很困难,造成了试商速度慢。针对这种情况,练习课中,在学生应用“四舍五入”法和口算方法试商的基础上,还要有针对性的帮助学生提高灵活试商的方法,如:4512÷47136÷26首先让学生确定商是几位数,初商在哪位,然后让学生讨论:被除数、除数有什么特点,该怎样试商?在此基础上,总结出了①同头试商法:如4512÷47这道题,因为除数和被除数的首位相同,而被除数的前两位小于除数,可以直接商9,比较简便。

计算教学要注意引导学生理解算理。在本节课的教学中,我通过问学生:“你是怎样想的?”来引导学生说出自己的想法,而学生的想法中往往就包含了对算理的理解,如果学生对算理的理解不够明确我又通过追问的形式,作进一步的引导,如在学生解决了前两个问题后追问:“为什么要把除数看作整十数来试商?”在学生完成试一试的两道题后追问:“为什么你要把28看作30来试商,看作20来试商不可以吗?”这样一来,就能加深对算理的理解。计算教学,只有算理理解了,学生才能掌握计算方法,提高计算的正确率,也才能运用计算去解决生活中的问题。

本节课因为学习了除数是整十数的的除法,所以我主要是放手让学生自己来探究,而在学生探究的过程中,我又特别关注学生的错例,并把这些错例展示出来,让学生来评议。由于学生在课堂中出现的错误都是有一定原因,学生在对错例的评议过程中,弄清了错误的原因,从而避免了课堂暴露的问题转移到课后。在学习的过程中,我关注了学生主体性的发挥,让学生自主探究、合作学习,使每一个孩子都能做一个新知识的发现者、研究者、探索者。在这节课的教学中,使我的教学品质得到了一定提升。在以后的教学实践中,我会帮助学生发现、组织和管理知识,引导他们;要学生以自己真实的感受去体验、理解;要让更多的学生尝试成功的喜悦,让学生自始自终参与到知识形成的全过程。

现在,我深深地感到:要上好一节课,教师必须有所付出,学生才会学生踏实。

《除数是两位数的除法》教学反思 2

【1】本单元的教学内容、是小学生学习整数除法的重要一部分内容,它是在学习了多位数乘一位数、除数是一位数的除法的基础上进行教学的。本节课的教学重点是确定商的书写位置,除的顺序以及试商的方法,潜移默化理解除数是两位数除法的计算法则,帮助学生解决笔算的算理;难点是试商的方法。学生初步学习除数是两位数的笔算除法,用四舍五入把除数看作和它接近的整十数进行试商后,学生试商时困难较大,在教给学生基本方法的同时,还应适当补充一点试商的小窍门。比如当除数的末尾数是1或9时,用四舍五入法一次试商即可成功。而当除数的末尾数是2、3、6、7、8时,在试商过程中,一般都要调商。当除数末尾数是4或5时,往往要经过多次调试方能求出商数来。在此基础上,总结出了①同头试商法:如451÷47这道题,因为除数和被除数的首位相同,而被除数的前两位小于除数,可以直接商9,比较简便。②折半商五法:如136÷26这道题,因为被除数的前两位接近除数的一半,所以直接商5,比较简便。总之,在除数是两位数除法的试商教学中,“四舍五入”法、口算法、同头试商法和折半商五法可视其情况挑选应用,可以互相弥补,相得益彰,得到最佳教学效果,提高学生计算的正确率和速度。

【2】本节课教学内容是除数是两位数的笔算除法,这节课讲的是“四舍”法计算。这是在学习了除数是整十数的除法的基础上学习的。重点是掌握笔算方法,帮助学生理解算理,难点是确定商的位置及试商的方法。 一、唤起回忆,构建框架为了用知识的迁移方法学习,这节课我复习导入,题目是除数是一位数的笔算和用整十数除的口算。笔算时,引导学生讲解方法、算理,准确板书,为学习除数是两位数的计算方法,搭好了框架;口算使学生意识到有几个几十的思考方法,如210÷30,商只能是一位数,这样就为学习新知做好了铺垫。二、理解算理,心中有数在渗透算理这一环节中,我紧紧抓住“商是一位数就表示几个一”这一关键句,使学生理解,“表示几个一”的数一定是个位上的数,所以商要与被除数各位上的数对齐。三、试商调商,按步计算四舍第一次出现试商,又需要调商,是本节课的难点。计算430÷62,学生试着计算、交流,接着汇报。这时师生共同完成书写。第一步,利用刚学过的除数是整十数的方法,学生自然想到把62看作60,即“四舍”方法。第二步,试商,430里有几个60,就试商几,很快找到商7。并得出:被除数的前两位不够,就看前三位。第三步,计算积,交流7乘60还是62?由于真正的除数是62,所以是7×62的积,发现积比430还大,说明商7大了。第四步,调商,7大了,要调小,商6,可以。

总结几步,帮助学生有序计算,头脑有清晰地步骤方法,不至于手忙脚乱。四、练习有序,循序渐进练习时,我先口算如30×()〈282 帮助试商熟练。接着根据试商,调商练习。最后独立计算。学生对所学知识层层深入,把不 ……此处隐藏6251个字……还需理解两位数除法中,前两位不够除时,看前三位,商写在个位;而当前两位够除时,就要先除前两位、商写在十位,例如:318÷15=?就是这样。通过多次巩固商书写的位置和除的顺序的基本问题学生基本解决。之后着重解决试商的问题。教材中安排了四组例题,分层次、分阶段分化了重点,分散了难点。例1主要解决试商、商的书写位置等问题;通过例2的教学使学生学会用四舍五入法把除数看作整十数来试商。例3的教学要使学生认识到要根据具体的情况采用不同的方法来试商。例4教学商是两位数的除法。学生初步学习除数是两位数的笔算除法,用四舍五入把除数看作和它接近的整十数进行试商时,在试商过程中,一般都要调商,往往要经过多次调试方能求出商数来。尽管教学时总结出了“用四舍”时,因把除数看小了,初商容易偏大,试商时可比原来想的商小1,而“五入”时,因把除数看大了,初商容易偏小,试商时可比原想的商大1。而学生在具体的计算中,还是感到很困难,造成了试商速度慢。

课上,特别针对试商、调商进行了大量练习,尤其是对于除数是24、25、26等的题进行了强调,例如:195÷26=?把26想成25,25×8=200,所以商试7。之后巩固记忆25×4=100、25×5=125、25×6=150、25×7=175,25×8=200等。

课后,通过学生的作业,针对出现的问题,我又进行了针对性的练习。另外,在做完题后,让学生加上了验算,使其能够自我验证,自我检查,反而出错的几率小了很多。然后还让学生每天花上几分钟进行口算练习,为笔算打好基础。

新授中,当学生列出三个算式时,不是急于讲解,而是又引导学生比较与以前所学的知识的异同,2人小组交流,及时把学生拉向主动探索新知的途径。

二、练习扎实有效,总结及时。

在练习设计中,教师并没有追求数量,而是在做每一道题中都让学生讲解计算过程,让学生真正的学有所获,在最后还总结了计算的方法,教学效果很好。

三、本次教研活动的主题是课前预设与课堂生成的有效融合。

在边做边练习的过程中,教师可以及时把学生的错误方法呈现出来,然后供大家参考,有效率极高,在练习被除数末尾有0,商的末尾也一定有0吗?举了不同的例子,从事实上说明了正确与否,让学生印象深刻。建议:在让学生说过程时是很有必要的,但是可以选择性的,这样可以为后面更丰富的练习留下时间。

《除数是两位数的除法》教学反思 13

开学第一单元教学了除数是两位数的除法,由于这是新教材,所以这一册没教过,我用很多课余时间用心研究教材,希望能吃透教材,教好学生。但是在作业中却发现全对者寥寥无几,于是课后把学生的作业一本本翻出来,一题题查看错误原因,希望找到改进的方法。

通过我对学生每本作业的翻看,发现学生对除法的计算方法基本掌握,绝大多数学生是商与除数相乘时出错,这反映了学生两位数乘一位数的口算没过关。有些学生乘对了,在被除数减除数乘商的积时又出错,看来减法计算掌握的也不太好。少数学生把除数看作整十数试商时,没有用商乘原来的除数,而是乘了整十数。还有学生抄错题,横式上漏写商或余数,还有的因自己书写不整洁而搬错,看错,还有的学生竖式写到一半就不写了,看来当时分心了。极个别学生除法不会计算。

针对这些问题,在教学中还要加强以下几个方面:

1、强化口算训练。以前没有明确提出口算的重要性,但教师们都能将口算作为一项常规来抓,课改以后却很少有时间再来练习口算。所以加强口算不能停还是要落实在平时的每节课中。口算是笔算的基础,每天花上十分钟进行口算练习是必要的,只要坚持,相信学生的口算能力就会明显提高。

2、适当增加关于计算的训练量。现在的《补充习题》已经关注到这一问题,四年级上册的《补充习题》对每课时计算设置了两课时的作业,在某种程度上弥补了课本练习相对不足的问题。但是在专项的计算内容教学以外,教师还要时刻关注学生的计算训练,每天练一下。

3、做好各学段的计算教学的衔接工作。只有所有数学教师都重视计算,将计算作为学生的基本能力来抓,才能使学生的计算能力逐步得到提升。必要时也可以进行速算、口算的班内比赛。

《除数是两位数的除法》教学反思 14

本节课我在确定教学目标时注重整体性。回忆算理算法,熟练技能;沟通知识间的内在联系,重新建构知识网络;通过问题解决,训练学生多向思维,培养学生合作意识和情感价值观。把学生的终身可持续发展作为数学教育的根本目的。

“加强口算、淡定笔算、重视估算、注重算法多样化”这是计算教改的方向。课标指出“应让学生在具体运算和解决简单实际问题的过程中体会乘与除的互逆关系。”因此本课在设计过程中没有把笔算的方法、技能作为复习的重点,而是让学生“体会、运用”乘除法的关系作为一项重要的教学目标贯穿在全课之中。通过小红、小亮、小明不同的计算结果的批改及根据小亮的正确算式1998÷54=37口算1999÷54=()……()等,让学生自觉运用乘除法之间的关系进行估算、验算、灵活解决实际问题,这样不仅使学生的计算能力有了较大的提高,而且学生思维的灵活性、创造性得到了良好培养。

数学思想方法是指在认识或处理各种数学或者非数学现象的思维过程中,所表现出来的种种数学观念及思维方式。在课堂教学中渗透数学思想方法的教学,使学生掌握基本数学思想和方法不仅使学科学习变得容易,而且对于学生将来从事的工作,随时随地发生作用,使他们受益终生。在本堂课的教学设计中,有机渗透了分类思想(把8个算式按不同的标准进行分类),函数思想(除数不变的情况下如何判断商的大小),极限思想(有没有最大、最小值,如有分别是多少)估计思想(谁的计算结果是正确的,哪一个商最大等)等。通过对各种数学思想方法的渗透教学,使学生真正学会数学的思考。如借助分类思想,使学生很好地把试商方法、估商方法、计算方法、乘除互逆关系有机地整合起来。

数学源于生活,应用于生活。我在课堂上努力使学生身临其境,体验生活、感悟数学。

《除数是两位数的除法》教学反思 15

本节课的教学重点难点:通过自主探究学会口算、估算的方法,能正确的进行口算、估算。

为了顺利突破本节课重点难点,我进行了精心设计,主要突出了以下几点:1、情景的创设:口算题的内容枯燥平淡,很难激发同学的学习兴趣。因此我根据同学的实际情况,用玩卷硬币的游戏把整堂可的内容串起来。融入了一个大的情景中,大大激发了同学的学习习惯和参与意识。2、算法的多样化。算法多样化是计算教学改革的一个新的理念,探索口算方法的过程,体会从不同的角度考虑问题。另外,无论是用想乘法算除法还是把除数转化为一位数的除法,对同学的后面学习都是有用的,所以特别对同学说明,用自身喜欢的方法口算,同学学得轻松,又通过倾听和交流得到了发展和能力上的提高。3、多方面的评价。本节课我从计算的方法、计算的速度、学习态度以和参与活动的积极性等方面,都适时地对同学进行了恰当的评价,使每个同学都能获得胜利的体验,充沛感受到学习的快乐,从而激发了同学学习数学的积极性,调动了同学参与学习的能动性,从而保证了学习效果。

《《除数是两位数的除法》教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式